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Two fundamental challenging problems of laboratory and astrophysical plasmas are the

understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution

functions and the resultant state of nearly equipartition energy density with electromagnetic plasma

turbulence. Here, we present the results of a study which shows the role that higher-order-modes

play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma.

Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions

that are bounded by the least-damped higher order modes. We further show that the zone where

the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer

wavelengths as the be increases. This merging zone has been interpreted as the beginning of the

region where the whistler-cyclotron waves losses their identity and become heavily damped while

merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas,

the higher-order modes do not confine the fluctuations due to the effective higher-temperature

effects and the excess of suprathermal plasma particles. The analysis presented here considers the

second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations,

with wave vectors parallel to the uniform background magnetic field, in a finite temperature

isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron–proton plasma. Our results

indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these

quasi modes suggesting that such modes play an important role in the emission and absorption of

electromagnetic fluctuations in thermal or quasi-thermal plasmas. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4861865]

I. INTRODUCTION

The processes of kinetic plasma relaxation and turbu-

lence generation are responsible for many of the observed

properties of laboratory and astrophysical plasmas. In partic-

ular, these processes play an important role in the solar wind

plasma which is the only collisionless plasma accessible to

detailed in-situ satellite observations.1–3 The morphology of

the plasma velocity distribution function (VDF) is generally

determined by the global structure of the magnetic and

electric fields, the nature of the scattering processes (e.g.,

Coulomb collisions, wave-particle interactions) between

the source and the measurement location and the boundary

conditions from which the particles emanate. Detailed meas-

urements of the VDFs can then provide information about

the propagation conditions and to some extent about the con-

ditions in the source region itself.

In spite of the absence of free-energy for plasma

instabilities, a finite-temperature plasma sustains a small but

detectable spontaneous fluctuations level of absorption and

emission of various collective modes of oscillations, which

arises from the discreteness of the plasma particles, in

other words, from the charge and current fluctuations in

the plasma. In linear and spatially homogeneous plasmas,

these spontaneous emissions4–9 are intimately linked to

electric and magnetic field fluctuations by the well-known

fluctuation-dissipation theorem.12 Spectral properties of the

scattered fluctuating emission can provide substantial infor-

mation about the state of a plasma. The analysis of electro-

magnetic wave scattering is, in fact, one of the most efficient

methods of plasma diagnostics used in laboratory fusion

research devices and in space-plasma measurement (e.g.,

Refs. 13–15).

The spontaneous thermal emissions of a particular

eigenmode of a plasma serve as a seed perturbation to drive

plasma instabilities of the corresponding wave modes when-

ever some free-energy process becomes available. The study

of these fluctuations leads also to the concept of correlation

functions (particularly in time) which play an important role

in relating the dissipative properties of a system, such as

the viscous resistance of a fluid or the electrical resistant of

a conductor, with the microscopic properties of the system

in a state of near-equilibrium.16 A good example of the

fluctuation-dissipation theorem is the quasi-thermal noise in

space plasmas which is directly linked to fluctuations of

charged-particle densities and electromagnetic fields, giving

rise to scattered radiation. For systems in nearly thermal

equilibrium, the emitted fluctuating radiation takes on the

1070-664X/2014/21(1)/012902/10/$30.00 VC 2014 AIP Publishing LLC21, 012902-1
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spectral form of black-body radiation. Because of fluctua-

tions of charge, current, and electromagnetic fields, the

particles can be excited, for example, by Langmuir, whistler-

cyclotron (wc), or Alfv�en waves, leading to a system that

cannot be in thermal equilibrium, so that the emitted radia-

tion deviates from the black-body approximation. However,

in most cases, the state of the system can be described by the

linear response to the perturbations from the equilibrium

state via the fluctuation-dissipation theorem.

The most striking feature of this theorem is in a funda-

mental manner, which it relates the fluctuations of a physical

quantity pertaining to the equilibrium state of a given system

to a dissipative irreversible process, which in practice is

realized only when the system is subject to an external per-

turbation that drives it away from its state of equilibrium.

Consequently, this theorem enables us to determine the near-

equilibrium properties of a given statistical system on the

basis of the knowledge of the thermal fluctuations occurring

in the system when the system is in one of its equilibrium

states. Thus, the statistical mechanics of irreversible proc-

esses is, in a sense, reduced to the statistical mechanics

of near-equilibrium states (provided we are capable of han-

dling the time dependent fluctuation processes occurring in

the system). The fundamental theory of fluctuations was

advanced by Callen and Welton12 and later improved and

refined by Sitenko17 which provided a detailed account of

the theory. Although the fundamentals ideas of the theory of

electromagnetic fluctuations have already been developed

in these references (Callen and Welton12 and Sitenko17),

the actual application of the formulation to the problem

of spontaneous emission of whistler-cyclotron waves and

its connection to the generally ignored higher-order modes

(hom) have received little attention.

The electromagnetic dispersion relation of whistler-

cyclotron waves and ubiquitous higher-order modes in a ther-

mal plasma has been previously investigated by Gitomer18

and Gitomer and Forslund19 in a study of collisionless cyclo-

tron damping of these wave modes, using a numerical linear

dispersion analysis and non-linear particle simulations in an

attempt to explain electron heating via these wave eigenmo-

des. Murata et al.20 also investigated similar higher-order

modes but associated with electrostatic ion-cyclotron waves.

However, it has not been until recently that these higher-

order modes have received more attention, in particular, with

regards to their role in the spontaneous emission of electro-

magnetic fluctuations in a plasma.7

In this paper, we examine the kinetic theory of electro-

magnetic fluctuations associated with the electron whistler-

cyclotron waves in plasmas following the theoretical

approach of Sitenko.17 In Sec. II, we cover the linear disper-

sion analysis for parallel fluctuating whistler-cyclotron

waves including the dispersion characteristics of the higher-

order modes in a stable-equilibrium plasma. This section

gives a brief description of the complete set of whistler wave

modes at parallel propagation, with particular attention paid

to the topology of the often ignored higher-order modes on

the dispersion analysis. In Sec. III, we discuss the general

second-order nonlinear theory of fluctuations focusing our

attention on the emission or absorption of electromagnetic

fluctuations and their relation to the higher-order modes. The

general discussion is carried out for two model distribution

function: (a) bi-Maxwellian and (b) Tsallis-kappa-like

VDFs.21–23 In Sec. IV, we complemented the analytical and

numerical approaches with a full particle simulation study in

the stable regime of a plasma under different thermal condi-

tions. Finally, a discussion of the results and the implication

to the limiting role of the higher-order modes on the fluctua-

tions of solar wind plasma observations is presented in

Sec. V.

II. LINEAR KINETIC THEORY AND HIGHER-ORDER
MODES

Whistler-cyclotron waves are fundamental transverse

electromagnetic normal modes of magnetized plasmas with

frequencies between the ion and electron gyrofrequencies,

jXpj < x < jXej. They are characterized by a helical right-

handed polarization, which makes them prone to resonate

with energetic electrons via cyclotron resonance. For that

reason, they have traditionally received much attention in

space plasma physics. These wave modes can be driven by

charged particle thermal anisotropies or by differential

streaming among various electron populations. For a proper

understanding of the linear and nonlinear instabilities involv-

ing such waves, it is essential to understand their mode struc-

ture (both normal as well as their higher-order modes)

to develop the ability to recognize them in laboratory and

space observations. Higher-order modes have been studied

for electrostatic waves by Derfler,24 Murata,20 and Gary and

Tokar,25 and for electromagnetic waves by Gitomer,19

Matsuda,26 and Astudillo.27

In this section, we describe the linear Vlasov-Maxwell

theory28,29 to determine the full set of electron wave modes

and higher-order modes for a homogeneous and magnetized

plasma. We assume electromagnetic fluctuations propagating

either parallel or anti-parallel to the ambient magnetic field

B0. The linearized dispersion relation tensor Kijðx; kÞ is

obtained from the Fourier-Laplace transformed Vlasov-

Maxwell equations yielding

Kijðx; kÞ ¼ eijðx; kÞ �
c2k2

x2
dij �

kikj

k2

� �
: (1)

The electromagnetic plasma medium properties are

completely described in terms of the plasma dielectric per-

mittivity tensor eij, which depends on the complex frequency

x and the wave-vector k. The dispersion relation that deter-

mines the frequencies x ¼ xðkÞ is given from the condition

that detðKÞ ¼ 0. For propagation parallel to B0, we obtain

detðKÞ ¼ KþK�Kk ¼ 0, so that the dispersion relation for

longitudinal and transverse waves are Kk ¼ 0 and K6 ¼ 0,

respectively.

The transverse contributions are given by

K6ðx; kkÞ ¼ 1�
c2k2
k

x2
þ 1

2

X
s

x2
ps

x2

ð
d3v

v?vsðx; kkÞ
x� kkvk6 Xs

; (2)

and the longitudinal contribution by
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Kkðx; kkÞ ¼ 1þ
X

s

x2
ps

x

ð
d3v

vk
x� kkvk

@Fs

@vk
; (3)

where we have defined

vsðx; kkÞ ¼ ðx� kkvkÞ
@Fs

@v?
þ kkv?

@Fs

@vk
: (4)

Here, x2
ps ¼ 4pnsq

2
s=ms is the squared plasma frequency and

Xs ¼ qsB0= mscð Þ is the cyclotron frequency, with ns; qs, and

ms the density, charge, and mass of the species s, respec-

tively, and c is the speed of light.

For a plasma composed of parallel drifting electrons and

protons that obey the bi-Maxwellian particle velocity distri-

bution function

Fs vjj; v?ð Þ ¼
1

p3=2ajjsa2
?s

exp �
vjj � Ujjs
� �2

a2
jjs

� v2
?

a2
?s

" #
; (5)

the resultant transverse electromagnetic dispersion relation

becomes

K6 x; kjj
� �

¼ 1�
k2
jjc

2

x2
þ
X
s¼p;e

x2
ps

x2

� nsZ n6
s

� �
þ Cs 1þ n6

s Z n6
s

� �� �� �
;

ns ¼
x� kjjUjjs

kjjajjs
; n6

s ¼ ns 6
Xs

kjjajjs
;

Cs ¼
a2
?s

a2
jjs
� 1 ¼ T?s

Tjjs
� 1; (6)

and the resultant longitudinal electrostatic dispersion relation

gives

Kjj x; kjj
� �

¼ 1�
X
s¼p;e

x2
ps

k2
jja

2
jjs

Z0 nsð Þ ; (7)

where Cs is a measure of the temperature anisotropy,

ajjs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jBTjjs=ms

p
and a?s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jBT?s=ms

p
are the parallel

and perpendicular thermal velocities, respectively. Z nð Þ and

Z0 nð Þ are the traditional Fried–Conte plasma dispersion func-

tion and its derivative with respect to n, respectively.30

It is well known that linear instabilities can be studied in

great detail from the solutions of the electromagnetic kinetic

dispersion relation without any restriction on wavelength,

growth rate, direction of propagation, etc. Many characteris-

tics of a given mode (e.g., growth or damping rate, polariza-

tion, wave vector, compressibility, etc.) can be determined

by solving the dispersion equation (analytically or numeri-

cally). However, linear dispersion relation studies tradition-

ally do not fully take into consideration the topology of

the whole x–k space. In general, only the fastest growing

wave and the least damped wave modes are studied by

following the solutions of the dispersion relation in the

complex–x plane for a set of fixed macroscopic parameters.

Nonetheless, any kinetic dispersion relation that includes

the Fried–Conte plasma dispersion function30 contains an

infinite number of root-solutions that are associated to

higher-order modes. These higher-order modes are also solu-

tions of the dispersion relation. In the past, these roots have

been considered unimportant because they are heavily

damped. As a result, there exists a common interpretation

that such heavily damped modes do not contribute signifi-

cantly to the propagation characteristics of the plasma or that

these modes are not physically realizable in a physical sys-

tem. In this paper, however, we show that this interpretation

is misleading. To investigate the nature of these higher-order

modes, we numerically solved the transverse dispersion rela-

tion given in Eq. (6). We consider here the role played by

these higher-order modes and their manifestation in an

electron-proton plasma.

The solutions of the transverse dispersion relation

K6 ¼ 0 are obtained numerically for various plasma condi-

tions and for the frequency range of interest (i.e., jXpj � x
� jXej) by considering a non-drifting i:e:; Ujjs ¼ 0

� �
iso-

tropic plasma. For the frequency range of interest, the

dynamics of the ions plays little role since they are more

massive than electrons and as such high frequencies they

can almost be considered unmagnetized. In Fig. 1, we

show the numerical results of the transverse dispersion

relation (K6 ¼ 0) for a warm plasma composed of isotropic

bi-Maxwellian ions and electrons (T?s=Tks ¼ 1), with

be ¼ bp ¼ 0:01 and xpe=Xe ¼ 1. Here, we show all four-

quadrants for the wave vector range of �3 � kjjke � 3 and

the normalized frequency �3 � Re ðxÞ=jXej � 3, where

ke ¼ c=xpe is the electron inertial length but only for the

positive helicity case (i.e., the positive sign selection in

Eq. (6). In the top panel [Fig. 1(a)], the solid curves crossing

FIG. 1. (a) Real part of the solution of the transverse dispersion relation K6

¼ 0 for an isotropic Maxwellian electron-proton plasma, with mp=me ¼ 1836;
xpe=Xe ¼ 1, and be ¼ 0:01. Solid curves correspond to whistler (wc), ordi-

nary (O) and extraordinary (X) normal modes, and dotted lines to hom.

(b) Corresponding imaginary part of the wave modes shown in panel (a).

012902-3 Vi~nas et al. Phys. Plasmas 21, 012902 (2014)
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the origin of the ðReðxÞ; kÞ-plane represent the standard

forward (third quadrants) and backward (fourth quadrants)

propagating right-handed wc modes which approaches reso-

nance at the electron cyclotron frequency -jXej. There are

two other wave modes corresponding to the left-handed

ordinary (O) and the right-handed extraordinary (X) wave

modes. Both modes approach asymptotically to the speed

of light at higher kjj-values. The ordinary left-handed

wave modes are the dashed curves that hit the cut-off

frequency at kjjke ¼ 0 just below the electron cyclotron

frequency x�þ jXejð Þ, whereas the extraordinary right-

handed waves are the dashed black curves that hit the cut-off

frequency at kjjke ¼ 0 above the electron cyclotron fre-

quency x�� jXejð Þ. These waves have their corresponding

forward and backward propagation counterparts as shown on

the other quadrants. Fig. 1(a) also includes eight more solu-

tions of the dispersion relation, of an infinite set of mode

solutions, corresponding to the least damped hom crossing at

Re ðx=XeÞ¼ �1 at kjjke ¼ 0 [red solid lines in Fig. 1(a)].

These modes has been studied before and they corresponds

to the An (upper) and Bn (lower) higher-order modes of

Gitomer and Forslund19 and Murata et al.20 Fig. 1(b) shows

the corresponding damping rate of the main branches of the

whistler-cyclotron solutions and also of the higher-order

modes. Recently, Felten et al.9 have investigated a kind of

aperiodic quasi-modes in an unmagnetized relativistic

plasma that appear to have similarities with the higher-order

modes cited here. However, the condition ReðxÞ � ImðxÞ
required by these aperiodic quasi-modes is not always true

when compared with the higher-order modes, since they also

depend on kjj. Nonetheless, some of the higher-order modes

do satisfy that condition and they could be the aperiodic

quasi-modes referred by Felten et al.9 There have been

further attempts to solve the dispersion relation to obtain

approximate analytical solutions to the normal modes for the

case of low-frequency electromagnetic Alfven waves.10,11

Such approximations for the higher-order modes have not

yet been attempted, and here we limit ourselves to the nu-

merical solution of all these modes.

Fig. 1(b) shows that for the ordinary and extraordinary

modes, the damping rate is essentially zero, whereas for the

whistler-cyclotron branch the damping is nearly zero at long

wavelengths and then increases substantially as the wave

vector increases. The damping of the higher-order modes

increases in the directions given by the red solid lines in

Fig. 1(b). These modes fill the ðReðxÞ; kÞ-plane so that the

least damped higher-order modes form triangle-like zones in

the dispersion diagram [Fig. 1(a)], with corners at the fre-

quencies near 0 and �2 Xe at kjjke ¼ 63. These zones also

contain portions of the whistler branches dispersion (in the

fourth and second quadrant). As a consequence, we could

expect that if free energy is available for the excitation of

whistler-cyclotron waves, they should emerge in those

regions bounded by the higher-order modes. In fact, linear

Vlasov analysis predicts that the whistler-cyclotron branch

can be unstable with an anisotropic bi-Maxwellian electron

distribution. As an example, for a temperature ratio

T?e=Tke ¼ 6 and the same be as in Fig. 1 (be ¼ 0:01), the

growth rate is positive in the normalized wave vector range

1:3 < kkke < 2:4, reaching its maximum at kjjke � 61:77

with Re ðxmax=jXejÞ � �0:03. Although not illustrated here,

the increase of the temperature anisotropy makes no qualita-

tive changes in the real part of the dispersion diagram.

Similar wave mode calculations were carried out for

larger values of be. Figs. 2 and 3 illustrate the solutions of

K6 ¼ 0 for be ¼ 0:1 and be ¼ 0:3, respectively. Note that

the zones of higher-order damped modes broaden (see Figs.

2(a) and 3(a)) with increasing be, whereas the damping rate

zones decreases (see Figs. 2(b) and 3(b)). Simultaneously,

the intersection between the least damped mode and the

whistler-cyclotron mode shifts towards smaller values of

kjjke. This result strongly suggests that with increasing be,

whistler wave-particle scattering will progressively tend to

occupy the lower part of the k-spectrum. As T?e=Tke
increases, the whistler branch becomes unstable (not shown

here) with the positive growth region shifted to smaller wave

vectors, but still constrained by the least damped

higher-order modes at small values of kjjke, and cyclotron

damping at larger wave vectors. As in the previous case, the

dispersion diagrams show no qualitative differences between

the electron isotropy and moderate unstable cases

(T?e=Tke < 3). In Sec. III, we will discuss an additional ki-

netic effect that is closely related to the behavior of the

higher-order modes and the triangle-like zones. The solu-

tions presented in Figs. 1 to 3 have a mirror image counter-

parts, when the negative helicity (i.e., negative sign) is used

in the dispersion relation of Eq. (6).

III. ELECTROMAGNETIC SPONTANEOUS
FLUCTUATIONS IN A PLASMA

The knowledge of the fluctuation spectrum is the start-

ing point for the computation of the emission of transverse

FIG. 2. Similar as in Fig. 1 but with be ¼ 0:1.

012902-4 Vi~nas et al. Phys. Plasmas 21, 012902 (2014)
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electromagnetic waves in a stable thermal equilibrium

plasma. Our aim in this section is to compute the spectrum

of these fluctuations, first when the plasma is represented

by a Maxwellian thermal distributions and later for a more

general case of a nonthermal distribution modeled by a

Tsallis-kappa-like distribution function. To describe the

state of the plasma, we shall use the statistical ensemble

average of the magnetic field through their deviations from

the mean values (i.e., fluctuations) which are governed by

the state of the plasma. The mean value of the fluctuations

are equal to zero by definition; so the fluctuations are

described by means of correlation functions (i.e., non-linear

second order correlators) in the x–k Fourier domain. These

are average products of fluctuations of different wavelengths

at different frequencies. The averaging procedure is carried

out over the mechanical or electrical state of the system and

over the statistical distribution of various states represented

by the correlation function. If the plasma medium is

spatially homogeneous and only stationary states of the

system are involved in the correlation, then the quadratic

wavevector-frequency correlation function depends only on

the relative distance and on the absolute value of the time

segment between the points at which the fluctuations are

examined.17

Following standard second-order methods, the classical

spectral distribution of electric field fluctuations in a magne-

tized isothermal, and homogeneous plasma can be generally

expressed (see Sitenko17) in terms of the fluctuation-

dissipation theorem where K�1
ij are the components of the

inverse of the dispersion tensor [Eq. (1)], and h � � �i repre-

sents an ensemble average

hdEidE�j iðx;~kÞ ¼ 4pi
kBT

x
ðK�1�

ij � K�1
ji Þ : (8)

For parallel propagation and using the Maxwell-Faraday

equation, we can express this equation in terms of the mag-

netic fluctuations as

hjdB6j2iðx;kjjÞ ¼ 8pkBT
c2k2
k

x3

Im K�6
� �
jK6j2

; (9)

whereas hjdBkj2i ¼ 0, and K6 is given by Eq. (2) above.

Equation (9) has been solved numerically for the spec-

trum of magnetic fluctuations as a function of wave vector

and frequency. The results of this calculation are illustrated

in Figs. 4–6 for different be-values. Figs. 4–6 are to be com-

pared with the dispersion counterparts presented earlier in

Figs. 1–3. Fig. 4 displays the contours and intensity scale of

the magnetic fluctuations obtained from Eq. (9) for the same

parameters as in Fig. 1. Also shown are the normal mode

solutions calculated from the dispersion relation K6 ¼ 0,

representing the whistler-cyclotron, the extraordinary, and

the ordinary wave normal modes of the system. The color

scale shows the normalized power levels in logarithmic scale

between 10�5 and 10�2. Comparing Figs. 4 and 1, it is clear

that the spontaneous thermal fluctuations emerge in the

triangle-like zones, i.e., they are constrained by the least

damped higher-order modes (dashed lines), which are also

solutions of the dispersion relation, indicating the zones

bounding (limiting) the fluctuations of the whistler-cyclotron

branch. Within these zones, the whistler-cyclotron, although

still distinguishable from the background fluctuations, is

heavily damped beyond kjjka 	 1:5 as indicated in Fig. 1(b).

In addition, Figs. 5 and 6 show the magnetic fluctuations for

the cases with be ¼ 0:1 and be ¼ 0:3, respectively. As be

increases and the damped zones become broader, the mag-

netic fluctuations fill the extended regions at frequencies

even larger than the cyclotron frequency, but otherwise with

decreasing power. Most of the power is localized along the

dispersion branch of the whistler-cyclotron mode, where the

collective properties of the plasma reinforce the spontaneous

fluctuations, i.e., the individual behavior of electrons. The

power around the other two eigenmodes, ordinary and extra-

ordinary waves, is also enhanced but at a significantly lower

lever than for the whistler-cyclotron waves. This could be

FIG. 3. Same as in Fig. 1 but with be ¼ 0:3.

FIG. 4. Contours plot and intensity scale of the magnetic fluctuations

obtained from Eq. (9) for a bi-Maxwellian plasma with the similar parame-

ters as in Fig. 1. Dotted lines superposed are the least damped higher-order

modes that confine the magnetic fluctuations.
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due to the fact that we use a non-relativistic treatment of the

fluctuations, and it could be possible that in the relativistic

case, the O and X modes, which are mostly fast waves (phase

speed higher than the speed of light in vacuo), should be

able to resonate with the electrons. Note that, except for the

symmetry breaking effects of temperature anisotropy or dif-

ferential streaming due to collective effects, the fluctuation

power is symmetric around the cyclotron frequency �jXej in
a stable thermal equilibrium plasma. Therefore, for a

Maxwellian plasma, the least damped higher-order modes

provides a confining range of whistler-cyclotron fluctuations

of the system. These results also shows that as be increases

the point where the whistler-cyclotron waves intersect

the electromagnetic fluctuations shift towards longer wave-

lengths (i.e., smaller kjjke). This intersection region is inter-

preted as the location where the whistler-cyclotron waves

begin to loose their identity by merging with the fluctuations

in the plasma, which are heavily damped.

A. Suprathermal effects

Here, we consider the topology of the spectrum of

magnetic fluctuations for a more general case of a nonther-

mal distribution modeled by a Tsallis-kappa-like distribu-

tion function.21–23 It is assumed that the plasma is

composed of parallel drifting electrons and protons that

obey the Tsallis-kappa-like particle velocity distribution

function given by

Fsj vjj; v?ð Þ ¼ Asj 1þ 1

j

vjj � Ujjs
� �2

a2
jjs

þ v2
?

a2
?s

 !" #� jþ1ð Þ

;

Asj ¼
1

p3=2ajjsa2
?s

C jþ 1ð Þ
j3=2C j� 1=2ð Þ : (10)

Here, the parameter j represents the degree on non-thermal

effects. When j is small, the velocity distribution in Eq. (10)

represents an effectively hotter distribution than a

Maxwellian, whereas for j large and approaching infinity,

the effective temperature reduces to that of a Maxwellian

distribution. This effective temperature Tj of a Tsallis-

kappa-like distribution can be defined in terms of the

Maxwellian temperature T by obtaining the second moment

of the distribution function Eq. (10) to yield

Tj ¼
j

j� 3=2
T : (11)

Substituting Eq. (10) into Eqs. (2)–(4), we can write the

perpendicular dispersion tensor as follows:

K6 x; kjj
� �

¼ 1�
k2
jjc

2

x2
þ
X
s¼p;e

x2
ps

x2

� nsZj n6
s

� �
þ Cs 1þ n6

s Zj n6
s

� �� �� �
;

Zj nð Þ ¼ C jð Þ
p1=2 j1=2C j� 1=2ð Þ

�
ðþ1
�1

dt

t� nð Þ 1þ t2

j

	 
�j

; Im nð Þ > 0 ; (12)

where, for j > 1=2, the function Zj nð Þ can be written in

terms of the Gauss hypergeometric function 2F1

Zj nð Þ ¼ i
j� 1=2

j3=2 2F1 1; 2j; jþ 1;
1

2
1� n

i
ffiffiffi
j
p

� �	 

; (13)

and the arguments ns and n6
s have been defined in Eq. (6)

above. Here, Zj nð Þ is the analogous plasma dispersion func-

tion for a kappa-like distribution as defined by Mace and

Hellberg31 and Mace and Sydora.32

We now present an estimate of the power spectrum of

magnetic fluctuations as defined by Sitenko,17 but solving

the dispersion relation for the Tsallis-kappa-like velocity

distribution in Eq. (10), using Eqs. (9) and (12). Fig. 7 repre-

sents the numerical results of the transverse dispersion

relation (K6 ¼ 0) for a warm plasma composed of a non-

drifting i:e:;Ujjs ¼ 0
� �

isotropic Tsallis-kappa-like velocity

distribution of ions and electrons (T?s=Tks ¼ 1), with

be ¼ bp ¼ 0:1 and xpe=jXej ¼ 1, which are similar parame-

ters as those used in Fig. 2 for a bi-Maxwellian plasma. Here

we use a value of j ¼ 3 that represents a particle velocity

distribution with a substantial suprathermal tail. For compar-

ison purposes, here, we show the same range of wave vectors

�3 � kjjke � 3 and normalized frequency �3 � Re ðxÞ=
jXej � 3 shown in Fig. 2. The solid curves of Fig. 7(a) cross-

ing the origin of the ðRe ðxÞ; kÞ-plane represent the standard

FIG. 5. Similar to Fig. 4 but with be ¼ 0:1.

FIG. 6. Same as Fig. 4 but with be ¼ 0:3.
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forward (third quadrant) and backward (fourth quadrant)

propagating right-handed whistler-cyclotron modes which

approaches resonance at the electron cyclotron frequency

�jXej. The other two wave modes correspond to the left-

handed ordinary and the right-handed extraordinary wave

modes. Both modes approach asymptotically the speed of

light at higher k-values. In Fig. 7(a), the ordinary left-handed

wave modes are the black-dashed curves that hits the cut-off

frequency at kjjke ¼ 0 just below the electron cyclotron

frequency x � jXejð Þ, whereas the extraordinary right-

handed waves are the black-dashed curves that hits the cut-

off frequency at kjjke ¼ 0 above the electron cyclotron fre-

quency x�� jXejð Þ; similar to Fig. 2(a) above. These waves

have their corresponding forward and backward propagation

counterparts as shown on the other quadrants. Fig. 7(a) also

includes two more solutions of the dispersion relation, corre-

sponding to the least damped higher-order modes crossing at

Reðx=XeÞ¼ �1 at kjjke ¼ 0 [red solid lines in Fig. 7(a)].

Although Figs. 7 and 2 have many similarities, one striking

feature between the two solutions is that the number of

higher-order modes is finite for a Tsallis-kappa-like distribu-

tion. Furthermore, the total number of higher-order modes

n obeys the relationship n ¼ j� 1ð Þ. Thus, for the case

depicted in Fig. 7 where j ¼ 3, the total number of higher-

order modes is four. The higher-order modes in Fig. 7(a) are

grouped very close together due to the rather effective higher

temperature of the non-thermal distribution compared to

the Maxwellian case. The Zj-function used in our calcula-

tions is essentially the same one defined by Hellberg and

Mace33 in their Eq. (10). Using a similar treatment as

Summers and Thorne,34 it can be shown that the dispersion

relation is a polynomial of order jþ 2 when j is integer and

thus admits jþ 2 complex solutions. After removing the

electromagnetic modes O, X, and whistler, then the net num-

ber of higher-order modes reduces to j� 1. Alternatively, it

can be shown that the 2F1 hypergeometric function for j in-

teger is represented by a finite-order polynomial, whereas for

j real, it has branch-cuts with infinite solutions.

Fig. 7(b) shows the damping rate of the main branches

of the normal mode solutions and of the higher-order modes.

For the whistler-cyclotron branch, the damping is nearly

zero at long wavelengths and then increases substantially as

the wave vector increases. For the ordinary branch, the

damping is greater that for the Maxwellian case. This is

because for the Tsallis-kappa-like distribution the effective

temperature for j ¼ 3 is higher than the Maxwellian, and

therefore such cases are quite similar to a higher temperature

Maxwellian case. For the extraordinary modes, the damping

rate remains essentially zero. The damping of the higher-

order modes increases in the directions given by the red-

solid lines in Fig. 7(b) but the triangle-like zones formed

by these modes in the ðImðxÞ; kÞ-plane show smaller disper-

sion among themselves than in the Maxwellian situation for

the same be ¼ 0:1. However, they seem to be similar to the

higher-be case of the Maxwellian distribution [depicted in

Fig. 3(b)].

In addition, Fig. 8 shows the corresponding electromag-

netic fluctuations for the case of be ¼ 0:1 of a Tsallis-kappa-

like velocity distribution function with j ¼ 3. As before, it

shows clearly the presence of the whistler-cyclotron, extraor-

dinary and ordinary normal modes of the system. The color

scale shows logarithmic normalized power levels between

10–5 and 10–2. Note that in this case, the electromagnetic fluc-

tuations are not bounded anymore by the least-damped higher

order modes. This is because the effective temperature of this

plasma [given by Eq. (11)] is effectively higher than a

Maxwellian, i.e., Tj ¼ 2 T for such k-value. This is expected

since the Tsallis-kappa-like distribution is a non-thermal dis-

tribution with an excess of suprathermal particles providing

such effective higher temperatures. Thus, the electromagnetic

FIG. 7. (a) Real part of the solution of the transverse dispersion relation

K6 ¼ 0 for an isotropic electron-proton plasma following nonthermal

distribution modeled by a Tsallis-kappa-like distribution function with

j ¼ 3; mp=me ¼ 1836; xpe=Xe ¼ 1, and be ¼ 0:1. Solid curves correspond

to whistler (wc), ordinary (O) and extraordinary (X) normal modes, and

dotted lines are the hom. (b) Corresponding imaginary parts of wave modes

shown in panel (a).

FIG. 8. Contours plots and intensity scale of the magnetic fluctuations

obtained from Eq. (9) for a Tsallis-kappa-like plasma (j ¼ 3) with the same

parameters as in Fig. 7 including the least damped higher-order modes

(dashed lines).
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fluctuations can grow outside the limiting region of the least

damped higher-order modes. Although not shown in here,

this is also valid for different values of be and j. Thus, in

summary, the higher order modes do not limit the electro-

magnetic fluctuations in a non-thermal plasma. This signature

can be used as a diagnostic for detecting the presence

of non-thermal plasmas in plasma systems where we have

access to magnetic fluctuation data but we do not have direct

in-situ measurements of the distribution function.

IV. FULL PARTICLE SIMULATIONS

We now compare our theoretical calculations against

full particle simulations for the same set of parameters used

in Secs. I–III. We carry out particle-in-cell (PIC) simulations

where the ions and electrons are treated kinetically and self

self-consistently with the electric and magnetic field fluctua-

tions. The simulation code is analogous to the KEMPO1

code of Omura and Matsumoto35 except for the schemes to

correct the longitudinal electric field, the interpolation to the

particle position and velocities, and the normalization. The

simulation code is initiated with a Maxwellian distribution

with a density and temperature consistent to the parameters

used in Figs. 1–3. Periodic boundary conditions are imposed.

The equations for the particle position and velocities are

solved using the Boris–Buneman scheme and evolved in

time by means of the leapfrog method. Moment charge

densities and currents are calculated by a second-order

Gaussian-like shape function by interpolation to the particle

positions and velocities followed by accumulation of their

charge and current contributions for each cell. This approach

reduced considerably the noise level to obtain cleaner and

smoothed results. Maxwell’s equations for the electric and

magnetic fields are solved via a second-order finite differ-

ence scheme. The longitudinal electric-field is corrected

according to the Marder36 and Langdon37 schemes to assure

that the longitudinal electric field determined via the

Ampere’s equation is self-consistent with that determined

from Poisson’s equation throughout the simulation. Time is

normalized in units of the electron cyclotron frequency,

particle positions are normalized to the electron inertial

lengths, whereas all velocities are normalized to the speed-

of-light. Because the dimensional system of equations was

written in cgs-units, the electric and magnetic fields were

normalized similarly.

The temporal collisionless cyclotron damping of whis-

tler waves has been studied by Scarf,38 Ossakow et al.,39

Gitomer,18 and Gitomer and Forslund19 using numerical sim-

ulations. The calculated numerical dispersion of these modes

agrees well with the prediction of a finite temperature linear

dispersion theory. In our 1.5-D (i.e., one spatial and 3 veloc-

ity dimensions) simulations, the plasma is presumed to be

collisionless, homogeneous, and magnetized, and it consists

of a single ion and electron components with realistic mass

ratio mp=me ¼ 1836. Initially, electrons and protons satisfy

an isotropic Maxwellian distribution, so that no free energy

is present and the plasma is stable. To avoid side effects

such as multi beam formation at low be, no quiet start

particle-loading scheme was employed. The number of grid

cells is 1024 with 1000 particles per species (electrons

and protons) per cell. Similar results are obtained if 1600

particles per cell are used. The length of the simulation box

is 512 in unit of the electron inertial length ke, the time step

is XeDt ¼ 0:05, and periodic boundary conditions were

imposed for particles and fields. In this section, we focused

only on the simulation results generated by a Maxwellian

velocity distribution. The simulation results for an initial

Tsallis-kappa like particle distribution will be presented later

in a subsequent paper.

Figs. 9–11 represent the simulation counterparts of the

theoretical results presented earlier in Figs. 4–6. Fig. 9 dis-

plays the x–k power spectrum of the magnetic field fluctua-

tions for be ¼ 0:01, obtained by Fourier-transforming the

transverse magnetic field data both in space and time. The

color scales show the power levels (normalized to the maxi-

mum wave power) in logarithmic scale between 10�6 and

10�2. After decomposing the wave fluctuations into positive-

and negative-helicity parts, we can clearly recognize the for-

ward (backward) propagating right-hand modes in the third

(fourth) quadrants, respectively. Fig. 9 also shows details of

the spontaneously emitted magnetic fluctuations, in agree-

ment with Figs. 1 and 4. Note the triangle-shape zone in

Fig. 9 beginning at x=jXej ¼ �1 near jkjjkej ¼ 0 that encom-

pass the whistler-cyclotron branch beyond kjjke 	 1. In these

triangle-shape zones, the whistler-cyclotron branch merges

with the fluctuations, loosing its identity and becomes heav-

ily damped. Figs. 10 and 11 depict the situations for the

cases with be ¼ 0:1 and be ¼ 0:3, respectively, and illustrate

that this merging region of the whistler-cyclotron waves and

the fluctuations shift to lower kjjke values as be increases.

Clearly, for the be-values investigated, the spontaneous

magnetic fluctuations are enhanced in the vicinity of the

whistler-cyclotron modes, which yet quickly lose their

identity at large values of kjjke with increasing be. Thus, if

enough free energy is available to overcome the natural

threshold imposed by the thermal fluctuation level, the

growth of linear and even nonlinear instabilities could be

understood in terms of the amplification of some of the fluc-

tuation modes. A quick comparison of Figs. 9 to 11 with

Figs. 1 to 3 shows that although we have chosen the positive

helicity solutions in the simulations, the results also includes

FIG. 9. Contour plot and intensity scale of the normalized magnetic power

spectrum obtained from numerical particle-in-cell simulations of a electron-

proton Maxwellian plasma, with mp=me ¼ 1836; xpe=Xe ¼ 1, and be ¼ 0:1
for an initial bi-Maxwellian plasma.
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the mirror-image counter parts, corresponding to negative

helicity, but at a much lower intensity. This is consistent

with the mirror-image solutions obtained by changing the

helicity sign in Figs. 1 to 3.

Fig. 12 shows a characteristic power spectrum obtained

from the numerical PIC-simulations. The plot corresponds

to a spatial Fourier mode kjjke ¼ 0:075 for the case of

be ¼ 0:01 and xpe=jXej ¼ 1. The principal peak is the

whistler cyclotron wave with a real frequency at x=jXej
¼ �0:31. The lower amplitude higher frequency modes near

x=jXej ¼ �1:0 are the fluctuations previously discussed.

These results are consistent with the result plots obtained by

Gitomer and Forslund19 (see their Fig. 3). There are two

other peaks associated with the ordinary (O) and extraordi-

nary (X) wave modes present in our simulation that do not

appear in Gitomer and Forslung19 paper due to the fact that

they use an implicit electromagnetic PIC-code that filter all

the speed-of-light wave modes, whereas we have used and

explicit PIC-code. Nonetheless, our results are consistently

similar.

V. CONCLUSIONS

A description of the role of higher-order damped modes

and their relation to the spontaneous magnetic fluctuations in

magnetized thermal and nonthermal plasma has been pre-

sented. We have shown the relevance of higher-order modes in

the emergence of spontaneous plasma fluctuations due to

quasi-thermal noise through the fluctuation-dissipation theo-

rem. From kinetic theory, the spectral distribution of the mag-

netic fluctuations is topologically constrained by the structure

of the heavily damped higher order modes in a thermal plasma.

These regions becomes broader as the plasma be increases and

they determine where instabilities could emerge if free energy

is made available to the system. We also have shown that

the zone where the whistler-cyclotron waves merges with the

electromagnetic fluctuations shifts to longer wavelengths as

be-increases. The zones where the whistler-cyclotron branch

merges with the fluctuations are interpreted as regions where

these waves lose their identity and becomes heavily damped.

All our linear dispersion calculations and theoretical spectral

fluctuation spectrum results exhibit remarkably consistent

agreement with fully self-consistent numerical simulations for

the same plasma conditions.

We have also carried out similar calculations for a non-

thermal plasma modeled by a Tsallis-kappa-like velocity

distribution function. In this case, the electromagnetic fluctu-

ations are unconstrained by the higher-order modes because

the Tsallis-kappa-like distribution has an excess of suprather-

mal particles that produce an effective temperature hotter

than a thermal Maxwellian plasma. This result provides a

critical observable signature, to determine the nature of a

plasma, via its velocity distribution function, when using

electromagnetic fluctuations data to diagnose the plasma

even when direct in-situ measurements of the distribution

function are not available. This important signature from ki-

netic theory should have applications to the understanding of

the heating of electrons in laboratory and astrophysical plas-

mas. The calculations presented in this paper can be easily

extended by analogy to the case of the low-frequency electro-

magnetic Alfven waves in which the ions play the major role.

In summary, our results indicate that the spontaneously emit-

ted electromagnetic fluctuations are in fact enhanced over

these higher-order modes, suggesting that such modes play

an important role in the emission and absorption of electro-

magnetic fluctuations in thermal or quasi-thermal plasmas.
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